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Abstract

Rhabdoid tumor is a rare, highly aggressive malignancy that primarily affects infants and young 

children. These tumors typically arise in the brain and kidney, although extrarenal, non–central 

nervous system tumors in almost all soft-tissue sites have been described. SMARCB1 is a member 

of the SWI/SNF chromatin-remodeling complex and functions as a tumor suppressor in the vast 

majority of rhabdoid tumors. Patients with germline mutations or deletions affecting SMARCB1 
are predisposed to the development of rhabdoid tumors, as well as the genetic disorder 

schwannomatosis. The current hypothesis is that rhabdoid tumors are driven by epigenetic 

dysregulation, as opposed to the alteration of a specific biologic pathway. The strategies for novel 

therapeutic approaches based on what is currently known about rhabdoid tumor biology are 

presented.
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I. INTRODUCTION

Rhabdoid tumor (RT) is a rare and highly malignant tumor that arises predominantly in the 

brain (referred to as atypical teratoid/RT [AT/RT]), kidney (RT of the kidney [RTK]), or soft 

tissues (extrarenal RT, malignant RT [MRT]). Frequent sites for extrarenal RTs include the 

skin, liver, and lung, although tumors in almost all soft tissues, including the orbit, thymus, 

uterus, bladder, and neck, have been reported. The peak incidence is between 1 and 4 years 

of age, although classic RTs in adults have been described.

Children, typically in their first year of life, may also present with more than one primary 

RT, consistent with a genetic predisposition to cancer. These infants typically have a central 

nervous system (CNS) AT/RT and RTK, or an AT/RT and a lung or liver tumor. Bilateral 
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RTKs occur but are much less frequent than bilateral Wilms tumors of the kidneys, 

accounting for 2% of RTK cases.1 Brain and spine imaging studies should, therefore, always 

be performed in a newly diagnosed patient with a renal or extrarenal RT. Similarly, imaging 

studies to rule out a renal tumor are indicated for a patient with AT/RT.

Epidemiologic studies of RT have been limited by the fact that this is a rare disease. Heck et 

al.2 performed the first population-based epidemiologic analysis of RT as part of an Air 

Pollution and Childhood Cancer Study in the state of California. They reported an 

association of RT with low birthweight, preterm birth, and late-term delivery. Of interest, 

twin pregnancies were associated with RT, which also was noted by Nicolaides et al.3 and 

Bourdeaut et al.4 Nicolaides et al.3 and Cecen et al.5 each reported a single case of RT in a 

patient born after in vitro fertilization, and we are aware of 3 children conceived by in vitro 

fertilization who developed AT/RTs in the first year of life (unpublished data). Although 

some studies suggest a small increased risk for cancer with the use of assisted reproductive 

technologies,6 this remains controversial.7

Histologically, RTs contain characteristic filamentous cytoplasmic inclusions, large nucleoli, 

and abundant eosinophilic cytoplasm. A variety of neural, epithelial, mesenchymal, or 

ependymal patterns may also be present, making the histologic appearance quite variable 

and clinical diagnosis difficult.8 CNS AT/RTs typically comprise rhabdoid cells and areas of 

primitive neuroepithelial tissue resembling a primitive neuroectodermal tumor (PNET), as 

well as mesenchymal and/or epithelial elements.9 In the past, this complex histologic pattern 

routinely led to misclassification of AT/RTs, most often as medulloblastoma/PNET.9,10 

Some AT/RTs display only the PNET component, and the diagnosis relies on molecular 

genetic analysis. It is assumed that the cell of origin for RTs is a primitive stem cell with the 

capacity for divergent differentiation, possibly derived from the neural crest.8

II. GENETICS OF RT

The majority of RTs arise as a consequence of homozygous inactivation of the SMARCB1/
INI1/hSNF5/BAF47 gene.11,12 Loss of expression of the protein permitted the development 

of an immunohistochemistry (IHC) assay13 that is based on the loss of nuclear expression of 

the protein in tumor cells, with retained expression in normal cells (Fig. 1). This IHC assay 

can be used in the vast majority of cases to help make a clinical diagnosis of RT. Loss of 

expression of SMARCB1 is also observed in other tumors with inactivation of the locus, 

including epithelioid sarcoma, cribriform neuroepithelial tumor, chordoma, and medullary 

renal cell carcinoma.14–20 Therefore, while the loss of SMARCB1 expression by IHC is 

highly sensitive, it is not specific. Correlation with other histologic and immunophenotypic 

findings, the patient’s age, and the location of the tumor is required to make a clinical 

diagnosis. RTs may also arise in the setting of a previously benign tumor in both the 

brain21,22 and peripheral nervous system23,24 following acquisition of a SMARCB1 
mutation and/or deletion. The loss of expression of SMARCB1 by IHC clearly distinguishes 

the rhabdoid areas from the other (less malignant) components of the tumor.

Versteege et al.11 first reported somatic mutations of the SMARCB1/hSNF5 gene in renal 

and extrarenal RT, followed shortly thereafter by a report by Biegel et al.12 of germline and 
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somatic mutations in INI1/hSNF5 in patients with RTs of the brain, kidney, and soft tissues.
12 SMARCB1 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, 

subfamily B, member 1) is now the recommended nomenclature to replace human sucrose 

nonfermenting gene number 5 (hSNF5), integrase interactor 1 (INI1), or 47-Kd Brg1/Brm-

associated factor (BAF47).

SMARCB1 is a member of the human SWI/SNF complex.25,26 The SWI/SNF complex acts 

in an adenosine triphosphate–dependent manner to remodel chromatin and thus leads to the 

activation and repression of gene transcription. Whole-exome sequencing studies of primary 

RTs27 have shown that biallelic mutations or copy number alterations of SMARCB1 seem to 

be both necessary and sufficient to cause cancer; there were no other consistent coding 

sequence or copy number changes identified. Stabilization of an epigenetically altered 

genome is thought to contribute to tumorigenesis, but the specific genes that contribute to 

transformation are not yet known.

Among patients newly diagnosed with RT, 25–30% have a germline alteration of 

SMARCB1 that predisposed them to cancer.4,28 In our patient cohort the median age at 

diagnosis for patients with germline SMARCB1 alterations was 6 months (range, 1 day to 5 

years) compared with a median age at diagnosis of 1.5 years (range, 1 day to 32 years) for 

patients with sporadic tumors.

Virtually all of the complete SMARCB1 deletions or larger 22q11.2 germline deletions that 

include SMARCB1 are de novo. The majority of germline SMARCB1 mutations in patients 

with RT are also de novo. Interestingly, the germline SMARCB1 deletions more frequently 

affect the paternal allele, whereas there seems to be a small bias for mutations to be present 

on the maternal allele, especially when they are inherited.28 Because of the ascertainment 

bias for a child with a RT, inherited germline mutations often are passed down from an 

unaffected parent. Because there is reduced penetrance of RT associated with a germline 

alteration of SMARCB1, the long-term risk for cancer in carriers of mutations or deletions 

of SMARCB1 is not yet known. Gonadal mosaicism also has been observed in several 

families28,29; therefore, parents need to be counseled appropriately about their recurrence 

risks and options for prenatal testing. Schwannomatosis (OMIM 162091) is characterized by 

the presence of multiple nerve tumors, which are histologically benign but may cause 

serious morbidity. Patients may also have meningiomas, and, in some cases, the 

schwannomas may transform into malignant sarcomas, requiring surgical intervention and 

chemotherapy. Approximately 50–60% of families with schwannomatosis have germline 

mutations in SMARCB1.30,31 We and others have described families with germline 

mutations or intragenic deletions or duplications in SMARCB1 in which the adult carriers of 

the mutations had fibromas or schwannomas and their affected children had RTs. Because 

the schwannomas may not develop until the third or fourth decade of life, individuals who 

have a bgermline SMARCB1 alteration must, therefore, be counseled about their own risk 

for both benign and malignant tumors, in addition to the cancer risks for their offspring. 

There does seem to be some genotype–phenotype correlation for the types of mutations that 

occur in schwannomatosis versus RT, as described below.
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The spectrum of germline mutations, deletions, and duplications from 70 patients with RT is 

shown in Fig. 2. Approximately 20% of the germline alterations are deletions in 

chromosome band 22q11.2 that include all of SMARCB1, whereas 25% of the patients have 

a partial deletion or duplication involving 1–5 exons of the gene. The remaining patients 

have a variety of truncating mutations caused by single base point mutations or insertions/

deletions leading to a frameshift. Splicesite mutations are the least common type of 

mutations observed in children who first present with a RT. By contrast, splicesite mutations 

and point mutations in exons 1 and 9 are more frequent in families with schwannomatosis.
30,31

The 3 most frequently detected germline specific mutations in SMARCB1 are c.118C>T in 

exon 2, c.157C>T in exon 2, and c.472C>T in exon 4.4,12,28 With the exception of the exon 

9 frameshift mutations (described below), the same mutations predispose carriers to AT/RT, 

renal RT, and, to a lesser extent, extrarenal RT. The majority of extrarenal RTs are sporadic 

and arise as a consequence of homozygous loss of SMARCB1 caused by deletions, 

unbalanced 22q11.2 translocations, or monosomy 22. The most frequent second hit in 

patients with a germline mutation is a large 22q deletion or monosomy 22, or a copy number 

neutral loss of heterozygosity (CN-LOH) generating event that unmasks the mutation or 

deletion on the remaining allele.

The distribution of SMARCB1-and chromosome 22–inactivating mutations, deletions, and 

CN-LOH in 200 sporadic AT/RTs, renal RTs, and extrarenal RTs is shown in Table 1. In the 

majority of tumors (43%) there is a mutation in one allele, and the second copy of the gene 

is lost as a result of a structural deletion in 22q11.2, monosomy 22, or an acquired CN-LOH 

event. Compound heterozygous mutations are infrequent in these patients (4%). Partial 

deletions and duplications are detected in approximately 15% of tumors. Homozygous 

deletions of exons 1– 9 of SMARCB1 are present in approximately 40% of RTs overall, 

although there is an unequal distribution with respect to anatomic location. Approximately 

25% of AT/RTs, 40% of renal RTs, and 70% of extrarenal RTs have homozygous deletions 

of the entire locus.

The mutations in sporadic RTs include single base pair point mutations and insertion/

deletion or frameshift mutations that are predicted to introduce a novel stop codon (Fig. 3). 

The majority of mutations result in nonsense-mediated decay, although this has not formally 

been proven in most cases The highest frequency of coding sequence mutations among the 

sporadic RTs occurs in exon 9 (Fig. 3). Two single base deletions in codons 381 (c.

1143delG) and 382 (c.1145delC) are somatic in origin and are associated exclusively with 

AT/RT.12 Mutations in exon 2 and exons 4–7 are frequently observed in RTK and AT/RT. 

Four specific mutations— c.118C T, c.157C>T, c.472C>T, and c.601C>T in exons 2, 2, 4, 

and 5, respectively—are highly recurrent, although they do not seem to be specific to the 

brain or kidney.4,12,28 Mutations in exons 1 and 3 are rare, and a mutation in exon 8 has been 

documented in only one RT in our cohort (unpublished data) in a patient with 

schwannomatosis.32 Splice site mutations are rare in primary RTs, and missense mutations 

have not yet been reported.4,28
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The 2 most common mutations in AT/RT are single base deletions in exon 9: c.1143delG 

and c.1145delC (Fig. 3B). Interestingly, neither of these frameshift mutations has been 

detected as a predisposing mutation in blood from patients with RT or schwannomatosis. 

These 2 frameshift mutations are not predicted to be subject to nonsense-mediated decay, 

and theoretically this would result in the addition of 100 amino acids to the protein. Similar 

to other RTs with coding sequence alterations, there is no expression of the protein by IHC 

in AT/RTs with these 2 exon 9 deletions.13 It is possible that this mutation functions as a 

dominant-negative mutation during early development, which is an area for future research.

Although SMARCB1 is the predominant gene altered in RTs, approximately 2–3% of 

tumors with rhabdoid histology retain expression of the SMARCB1 protein on IHC and do 

not display inactivating mutations in the gene. A small number of families and patients with 

RT with germline or somatic mutations of SMARCA4, which is the primary ATPase in the 

SWI/SNF complex, have now been reported.33,34 A variety of solid tumors in children and 

adults, such as medulloblastoma, the most common malignant brain tumor in children, have 

mutations in SMARCA4. To date, however, the only other tumor type to demonstrate 

biallelic inactivation of SMARCA4, consistent with a cancer-predisposing germline 

mutation and second somatic alteration, is small cell carcinoma of the ovary, hypercalcemic 

type (SCCOHT).35–37 Based on the relatively early age at presentation, and the presence of 

rhabdoid-appearing cells on histology, it has been proposed that SCCOHT represents 

another type of extrarenal RT.38 The germline mutations in SCCOHT included both 

missense and truncating mutations, typically with loss of the wild-type allele as the second 

inactivating event in the tumor.

Interestingly, mutations in a variety of SWI/SNF proteins, including ARID1A, ARID1B, 

SMARCA2, SMARCA4, SMARCE1 and SMARCB1, have recently been reported in 

patients with genomic disorders such as Coffin-Siris syndrome (CSS)39–43 or Nicolaides 

Barrister syndrome43–45 who do not seem to be at increased risk for cancer, as well as in 

patients with unexplained intellectual disability or autism.46,47 Most patients with CSS and 

SMARCB1 alterations have heterozygous missense mutations, which are so far distinct from 

the typical nonsense mutations that occur in patients with RT or the splice site mutations that 

often occur in familial schwannomatosis. We studied 1 patient with CSS and a missense 

mutation in exon 9 who developed multiple schwannomas but not RT.48 As whole-genome 

sequencing moves into the area of prenatal testing, the prediction of whether such mutations 

will result in a genomic disorder or increased risk for malignancy will become extremely 

challenging.

III. HISTORICAL TREATMENT AND OUTCOMES

Patients with AT/RT have, until recently, been treated according to institutional preference or 

nonspecific infant brain tumor protocols, combining surgery, possible radiation therapy, and 

chemotherapy. In general, drugs have included some combination of platinum agents, 

epipodophyllotoxins, oxazaphosphorines, vinca alkaloids, methotrexate, and anthracycline, 

with or without intrathecal directed medications (methotrexate, hydrocortisone, cytarabine, 

mafosfamide) and/or high-dose chemotherapy with stem cell rescue.49–56 While the optimal 

“standard” therapy remains debated, the prognosis has improved from early reports to nearly 
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50% overall for AT/RT, but for RTK it remains unchanged at approximately 20–25%.1,57,58 

Efforts by the Children’s Oncology Group (COG) to improve the cure rate of AT/RT 

(protocol ACNS0333 [www.clinicaltrials.gov identifier NCT00653068]) use a combination 

of surgery; 2 cycles of induction chemotherapy (cisplatin, cyclophosphamide, etoposide, 

vincristine, methotrexate); consolidation therapy with 3 cycles of high-dose chemotherapy 

with stem cell rescue (thiotepa, carboplatin); and age- and stage-directed radiation therapy. 

By contrast, the Dana Farber Consortium AT/RT study (www.clinicaltrials.gov identifier 

NCT00084838) uses a more protracted approach to combination therapy with surgery, age- 

and stage-directed radiation, and chemotherapy lasting approximately 1 year in duration, in 

part based on historic rhabdomyosarcoma group therapy, including vincristine, 

dactinomycin, cyclophosphamide, cisplatin, doxorubicin, temozolomide, and intrathecal 

methotrexate, cytarabine, and hydrocortisone.51 In Europe the registry study (Eu-Rhab) for 

all RT (AT/RT, RTK, MRT) recommends using combination therapy including surgery, 

radiotherapy, and chemotherapy (vincristine, dactinomycin, cyclophosphamide, doxorubicin, 

ifosfamide, carboplatin, etoposide), and intrathecal methotrexate and permissive use of high-

dose chemotherapy with stem cell rescue (carboplatin, thiotepa).59

Before study AREN0321 (www.clinicaltrials.gov identifier NCT00335556), in the United 

States, RTKs specifically were historically treated along-side Wilms’ tumors in National 

Wilms’ Tumor Study trials with regimens used for the treatment of Wilms’ tumors, 

including vincristine, dactinomycin, and doxorubicin, with or without cyclophosphamide. 

The outcomes attained with these regimens were poor.1,57 NWTS-5 adopted a different 

treatment strategy consisting of carboplatin and etoposide alternating with 

cyclophosphamide (regimen RTK). Preliminary analysis of patients treated with regimen 

RTK revealed no clear improvement compared with previous studies, leading to study 

closure. Subsequent case reports demonstrated that ifosfamide-carboplatin-etoposide or 

ifosfamide-etoposide chemotherapy alternating with vincristine-doxorubicin-

cyclophosphamide can be efficacious against RTK,52,60,61 providing the rationale for study 

AREN0321 regimen UH-1 (vincristine-doxorubicin-cyclophosphamide alternating with 

cyclophosphamide, carboplatin, etoposide), as well as the similar Eu-Rhab registry regimen. 

In study AREN0321, patients with stage 4 measurable RTK or MRT were initially eligible 

for vincristine/irinotecan window therapy, but none of the 3 patients with RT who were 

enrolled in the window responded, leading to closure of such window therapy for patients 

with RT. Preliminary analysis of regimen UH-1 does not, unfortunately, demonstrate clear 

improved outcome compared with historical data; however, further analyses are in process. 

While some authors discuss a potential role for even higher doses of alkylator therapy and/or 

high-dose chemotherapy for RTK and MRT, analogous to approaches drafted for AT/RT,
62,63 no formal trial has demonstrated a therapeutic advantage in the treatment of non-CNS 

RT, and any further intensification of therapy is challenged by the fact that current regimens 

already maintain a toxicity-related mortality of approximately 5%, as well as significant 

morbidity.64

In sum, while the prognosis for select patients—particularly those with localized RT 

associated with an older age and lower stage disease—has improved some,1,65,66 the overall 

outcomes of RT remain poor despite maximized therapy intensity, mandating the discovery 
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and integration of targeted novel therapy, which is likely to emerge from a deeper 

understanding of RT biology and additional preclinical investigation

IV. RT BIOLOGY AND TARGETED THERAPY

Current preclinical investigations aiming to expand therapy options and improve the survival 

of infants and children with RT have focused largely on the specific interrogation of 

SMARCB1-related biology and potential therapeutic targets (Table 2), as well as nonspecific 

preclinical efforts conducted through the Pediatric Preclinical Testing Program (PPTP), 

using 2 RT cell lines and xenografts for testing of new agents emerging from the 

pharmaceutical industry.

SMARCB1 plays a critical role in epigenetic regulation, cell cycle progression, and 

signaling crosstalk, all of which provide fertile ground for preclinical and clinical 

investigation. SMARCB1 functions as a classic tumor suppressor and is the primary gene 

responsible for malignant RT pathophysiology. While homozygous inactivation of Smarcb1 
in mice exhibits embryonic lethality, 20% of heterozygous Smarcb1 mice that are normal at 

birth ultimately develop sarcomas at a median age of 1 year, following a second hit to the 

Smarcb1 locus. All mice with conditional biallelic inactivation of Smarcb1 develop cancer, 

with a median onset of 11 weeks, making this one of the most aggressive cancer 

predisposition genotype–phenotype correlations yet described.67,68 As mentioned, RTs are 

generally diploid and genomically stable, lacking additional recurrent gene amplifications or 

deletions beyond Smarcb1 loss. The SWI/SNF complex, perturbed in the setting of Smarcb1 
loss, acts in an adenosine triphosphate–dependent manner to remodel chromatin, regulating 

gene transcription and DNA repair. Considering the lack of cooperating mutations and 

aggressive neoplasia, RT is perhaps the quintessential tumor driven by epigenetic 

dysregulation.

A. Epigenetic Targeting

The evolving field of epigenetics has provided access to targeted therapy aiming to alter 

methylation and acetylation patterns within cancer cells.69

Somewhat speculative at this point, the loss of SMARCB1 is postulated to result in a global 

failure to release the repressive H3K27 trimethylation mark present on bivalently modified 

histones, mediated by the polycomb complex 2, resulting in widespread epigenetic 

modifications and leading to arrested development and abnormal proliferation, potentially 

via histone methylation processes.70 The polycomb group family of proteins represses 

transcription by mediating histone 3 lysine-27 trimethylation. Two members of the 

polycomb complex 2, CBX6 and EZH2—the latter a histone methyltransferase—are 

upregulated in RT (Fig. 4). ZNF217, an organizer of repressive histones, is also significantly 

upregulated in RT and is capable of demethylating H3K4me3 and methylating H3K27 

through interaction with EZH2.70,71 EZH2 inhibitors are now in clinical development (Table 

2), and one report by investigators associated with the company Epizyme documents in vitro 

and in vivo activity against RT, albeit delayed,72 potentially limiting efficacy in more rapidly 

dividing and morbidly aggressive RT. EZH2 inhibition also has been shown to sensitize RT 

cells to the effects of radiation.73
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In addition to EZH2 histone methyltransferase targeting, preclinical investigations have 

demonstrated anti-RT effects with histone deacetylase inhibitors (HDACi) and 

demethylating agents.74–79 HDACi sensitization of RTs to radiation therapy and 

sensitization to anthracycline-based therapy also has been demonstrated in RT cell lines.
74,75,80

Importantly, the strategy for future treatment of patients with RT should include the addition 

of new agents concurrent with, or before, standard chemotherapy. DNA damage response 

pathways, apoptosis signaling components, DNA repair components, and drug transporters 

each include genes subject to epigenetic control in cancer and relevant to chemotherapy 

disease resistance.81–83 For example, multidrug (doxorubicin and cisplatin)–resistant human 

MCF-7 breast adenocarcinoma cells demonstrate loss of global DNA methylation, loss of 

histone H4 lysine 20 trimethylation, increased phosphorylation of histone H2 serine 10, and 

diminished expression of Suv4–20h2 histone methyltransferase compared with parental 

MCF-7 cells.84 Subsequent investigations have demonstrated that DNA methyltransferase 

inhibition with 5-azacytidine reduces MDR1 promoter methylation in MCF-7 cells, with 

changes in chromatin structure.85 MLL1, a histone methyltransferase specific for H3K4 that 

is transcriptionally activated through interaction with SMARCB1, as previously discussed, 

has been shown to be required for MDR1 promoter methylation and chemoresistance.86 

Chemotherapeutic drugs can upregulate MDR1 with associated H3 acetylation and induction 

of methylated H32K4 within the MDR1 locus.87 Similar to MDR1, ABCG2 gene expression 

is dependent on DNA methylation.88 EZH2, upregulated in RT, is essential for 

chemotherapy resistance in cisplatin resistant cell lines, likely through H3K27 methylation.
89 Removal of H3K27 methylation resensitizes drug-resistant ovarian carcinoma cells to 

cisplatin by in-creasing DNA-platinum adduct formation resulting from increased access of 

cisplatin to target DNA sequences.90 Further, DNA methyltransferase inhibition enhances 

chemosensitivity to cisplatin.91 Last, microRNAs themselves, which are suppressed in RT, 

can mediate drug sensitivity.92 Specifically, suppression of mir451 imparts doxorubicin 

resistance in MCF-7 cells.93 Thus, it is possible that DNA or histone methylation inhibitors 

may sensitize cells to the effects of standard chemotherapy via a reversal of resistance 

mechanisms.

The COG completed a trial of decitabine in combination with doxorubicin and 

cyclophosphamide in children, which is of potential interest in RT, though concerns 

regarding adequate pharmacodynamic demethylation and toxicity have thus far limited 

advancement.94 In pediatric-focused trials, decitabine/vorinostat chemotherapy combination 

therapies have advanced with anthracycline-based combination therapy in relapsed leukemia 

(www.clinicaltrials.gov identifier NCT01483690) and with alkylator therapy for brain 

tumors.95

B. CDK4/CDK6/CyclinD/RB

Reports to date have demonstrated that SMARCB1 loss can promote cell cycle progression 

resulting from upregulation of targets of the p16INK4a-Rb-E2F pathway, primarily 

including cyclin D1 (upregulated in primary RTs) as well as several cyclin-dependent 

kinases (CDKs).70,96 Rb family loss has been shown to increase rhabdoid tumorigenesis,97 
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and reintroduction of SMARCB1 into RT cell lines leads to G1 arrest and decreased cyclin 

D1 transcription,98 whereas ablation of CyclinD1 abrogates malignant RT evolution in 

mouse models.99 Tumor development in Smarcb1-deficient mice is greatly accelerated in the 

absence of functional p53 protein.100 These findings suggest a cooperative effect between 

SMARCB1 and the pRB, CyclinD1, and Tp53 pathways.

Flavopiridol, a nonspecific CDK inhibitor, has inhibited RT cell growth with synergy 

demonstrated with tamoxifen in tumor models.101 The CDK4/6 inhibitor LEE011 is 

currently in phase I/II investigation in pediatric patients with perturbed RB/CyclinD1/

CDK4/6 pathway signaling, with specific focus on RT and neuroblastoma 

(www.clinicaltrials.gov identifier NCT01747876). Other CDK4/6 inhibitors are in active 

development (Table 2).

C. Aurora-A-Kinase

Aurora-A-kinase is expressed at high levels in RT and is repressible with SMARCB1 
reintroduction into RT cells via transcriptional downregulation. In addition, small interfering 

RNA targeting of Aurora A induces RT cell death in vitro,102 and additional data from PPTP 

testing of the aurora-A-kinase inhibitor MLN8237 (Alisertib) demonstrated in vivo activity 

in RT xenografts.103 Such data prompted the COG Rhabdoid Tumor Working Group to 

endorse the phase II trial of Alisertib in pediatric solid tumors via the inclusion of an RT 

stratum (ADVL0921; www.clinicaltrials.gov identifier NCT01154816). Unfortunately, none 

of 4 patients demonstrated an objective response to further accruals before study closure. 

Nonetheless, an institutional study (www.clinicaltrials.gov identifier NCT02114229) 

continues to investigate Alisertib in patients with RT, either as a single agent for recurrent/

refractory disease or as part of combination therapy with chemotherapy, surgery, and 

radiation to treat AT/RT. While trial NCT02114229 is not designed to test concurrent 

Alisertib and radiation exposures, preclinical data suggest a potential role for Alisertib as a 

radiation sensitizer in the treatment of RT.104

D. Additional Potential Targets

SMARCB1 loss leads to increased expression of GLI1, noted in RT primary tumors, 

supporting a role in the biology of the sonic hedgehog pathway and suggesting that 

downstream inhibition of the pathway is worth further preclinical and possibly clinical 

testing.59 Microarray experiments have further suggested interferon therapy or 

downmodulation of PLK1,105 as well as osteopontin and endostatin,70 as worthy of further 

consideration. Additional genomic studies are underway as part of the National Cancer 

Institute–sponsored “Therapeutically Applicable Research to Generate Effective 

Treatments” (TARGET) initiative, inclusive of RTs derived from the COG biobank 

(AREN10B2).

E. PPTP Investigation in RT

The PPTP uses several RT cell lines (BT-12 and CHLA-266) and xenografts (BT29, KT16, 

KT14, KT12) in the study of new agents. Interestingly, these studies started with the 

validation of traditional chemotherapeutic agents such as vincristine, cyclophosphamide, and 

cisplatin. While widely used, vincristine failed to show an effect in BT29 and yielded growth 
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delay in KT14 and KT12 only.106,107 Cyclophosphamide and cisplatin therapy each resulted 

in a partial response and a complete response in KT16, respectively (a xenograft that trended 

toward increased sensitivity with other agents as well), and growth delay in BT29 and KT14. 

Additional activity was noted for AZD2171 (vascular endothelial growth factor [VEGF] 

receptor inhibitor), ispinesib (antimitotic), SU11248 (VEGF receptor inhibitor), rapamycin 

(mammalian target of rapamycin inhibitor), SVV001 (oncolytic), PR-104 (alkylator), 

GSK923295A (centromere protein E inhibitor), MLN8237 (aurora-A-kinase inhibitor), 

cabozantinib (VEGF receptor/c-Met inhibitor), and RG7112 (MDM2 inhibitor).103,108–116 

Interesting additional negative results included in vitro assessment of the HDACi vorinostat 

(SAHA), showing high half-maximal inhibitory concentration (>2 µM) values, as well as 

limited activity with the HDACi JNJ-26481585 (quisinostat),117,118 limited growth delay in 

vivo with topotecan,119 and lack of in vitro or in vivo activity with CDK1/2/5/9 inhibitor 

SCH727965 (Dinaciclib).120 While correlations of such preclinical testing with clinical 

activity in patients remains unproven, these data suggest several classes of drugs worth 

consideration of further clinical investigation, including VEGF multi–tyrosine kinase 

inhibitors as well as novel antimitotic therapies.

V. CONCLUSIONS AND FUTURE DIRECTIONS

RT remains a biologically fascinating, quintessential model of epigenetically controlled 

aggressive neo-The efforts of registry studies, cooperative group biological and clinical 

trials, and independent investigator– driven exploration of rhabdoid genomics; exploration of 

SMARCB1-driven biology, targeting epigenetic determinants of disease; and collaboration 

with the pharmaceutical industry to advance further preclinical and clinical testing are all 

imperative to advancing this important cause. Importantly, not only will such advances 

benefit patients and families affected by rhabdoid and related tumors, the results of such 

investigations are likely to be generalizable to a wide array of SMARCB1-dependent cancers 

and the epigenetic control of neoplasia in general.
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ABBREVIATIONS:

AT/RT atypical teratoid/rhabdoid tumor

CNS central nervous system

COG Children’s Oncology Group

CSS Coffin-Siris syndrome

CN-LOH copy number neutral loss of heterozygosity

CDK cyclin-dependent kinase
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HDACi histone deacetylase inhibitor

IHC immunohistochemistry

MRT malignant rhabdoid tumor

PPTP Pediatric Preclinical Testing Program

PNET primitive neuroectodermal tumor

RT rhabdoid tumor

RTK rhabdoid tumor of the kidney

SCCOHT small cell carcinoma of the ovary, hypercalcemic type

SMARCB1 SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, 

subfamily B, member 1

VEGF vascular endothelial growth factor
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FIG. 1: 
Histology of a metastatic abdominal malignant rhabdoid tumor. A: Hematoxylin and eosin 

staining (magnification ×60) demonstrates the presence of rhabdoid cells. B: Loss of 

SMARCB1 is seen by immunohistochemistry (magnification ×40). (Reprinted with 

permission from Dr. Bruce Pawel, Department nof Pathology & Laboratory Medicine, The 

Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania.)
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FIG. 2: 
Distribution of germline mutations, deletions, and duplications in SMARCB1 from 70 

patients with rhabdoid tumor. Exons, introns, and genetic alterations are not drawn to scale. 

Stacked symbols are used to identify mutations recurring at the same nucleotide position. 

Indel, insertion/deletion.
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FIG. 3: 
Somatic point mutations (A) and frameshift mutations (B) identified in 200 sporadic 

rhabdoid tumors. Somatic point mutations and frameshift mutations were identified in a total 

of 46 and 53 patients, respectively.
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FIG. 4: 
Regulation of gene expression by SWI/SNF and Polycomb repressive complex 2 (PRC2) 

complexes. During lineage-specific differentiation, the SWI/SNF complex, which includes 

SMARCB1, interacts with transcription factors, histone acetyltransferases, and 

transcriptional regulators to activate expression of target genes. Acetylation of histone 

H3K27 is present at transcriptionally active genes. Opposing the SWI/SNF complex is the 

PRC2 complex, which contains EZH2. PRC2 interacts with DNA methyltransferases and 

histone deacetylases to silence gene expression. The transcriptionally inactive genes are 

marked by methylation at histone H3K27. In rhabdoid tumors the loss of SMARCB1 

expression prohibits the normal functions of the SWI/SNF complex, resulting in altered gene 

expression.
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TABLE 1:

Acquired SMARCB1 Alterations in 200 Sporadic Rhabdoid Tumors

Allele 1
Alteration

Allele 2 Alteration Total

Mutation Partial Gene
Deletion /
Duplication

Whole Gene
Deletion

CN-LOH

Mutation 8 (4%) 1 (0.50%) 58 (29%) 27 (13.5%) 94 (47%)

Partial gene
deletion /
duplication

— 5 (2.5%) 14 (7%) 11 (5.3%) 30 (15 %)

Whole gene
deletion

— — 76 (38%) — 76 (38%)

Total 8 (4%) 6 (3%) 148 (74%) 38 (19%) 200 (100%)

CN-LOH, copy number neutral loss of heterozygosity.
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TABLE 2:

Molecular Targets and Potential Inhibitors of Rhabdoid Tumors

Epigenetic
Target

Mechanism of
Action

Agent Pediatric Development Comments

EZH2 Histone methylation E7458,
EPZ-6438,
GSK2816126

Agents pending phase I investigation

DNMT DNA methylation Decitabine,
5-Azacitadine
SGI-110

Decitabine: phase I single and combination
studies complete

HDAC Histone deacetylation Vorinostat,
Valproic acid,
Romidepsin,
Panobinostat,
Quisinostat,
Others

Vorinostat: phase I single and combination
studies complete/ongoing

CDK4/cyclinD G1 cell cycle arrest Palbociclib,
LEE011,
P276-00,
LY2835219

LEE-011: pediatric phase I/II (rhabdoid)

Aurora-A-kinase Antimitotic Alisertib,
TAS-119,
ENMD-2076,
AMG900

Alisertib: pediatric phase II (rhabdoid)

CDK4, cyclin-dependent kinase 4; DNMT, DNA methyltransferase; EZH2, enhancer of zeste 2 polycomb repressor complex 2; HDAC, histone 
deacetylase.
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