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1. INTRODUCTION: HISTORICAL VIEW OF CANCER 
STEM CELLS
Increasing evidence over the past decades suggests that cancer 
cells are hierarchically organized within tumor, in which a sub-
population of cancer stem cells (CSC) is responsible for sustain-
ing tumor growth.1–3 These CSC share important characteristics 
with normal stem cells, including self-renewal,4 differentiation 
capacity,5 and quiescence, which, collectively, are referred to as 
the “stemness” properties. The CSC hypothesis was initially pro-
posed in the nineteenth century on the basis of observation of 
morphologic heterogeneity in cancers. The first solid evidence 
supporting the existence of CSC was found in acute myeloid 
leukemia (AML) in 1994 by fractionating AML cells based on 
their cell surface markers CD34+ CD38– using flow cytometry.6 
Later, CSC were also identified in other types of tumors includ-
ing breast cancer, colon cancer, glioblastoma, and head and 
neck squamous cell carcinoma.7–9 The principle of CSC model 
describes that CSC divide asymmetrically, generating undiffer-
entiated daughter cells that remain as CSC, as well as differenti-
ated daughter cells that compose the bulk of tumor, whereas 
non-CSC do not have these capacities.10 As such, it was believed 
that CSC are epigenetically (or genetically) and metabolically 
distinct from non-CSC. Because CSC subpopulation was defined 

as cells with cancer-initiating ability, regardless of whether or 
not they derive from normal stem cells, the term “tumor-initiat-
ing cells (TICs)” is sometimes preferred by researchers.

Given that the CSC subpopulation is closely associated with 
poor prognosis,11 their identification is of particular importance. 
Most CSC in a variety of malignancies have been identified by 
the detection of specific surface marker, such as CD133, CD44, 
and Oct-4, either alone or in combination.8,12,13 The intracel-
lular proteins (such as aldehyde dehydrogenase 1),14 capability 
of efflux of Hoechst 33352 dye (known as side population),15 
and reduced reactive oxygen species (ROS),16 have also been 
employed to mark the CSC. However, even though a list of 
markers has been linked to CSC, it is not uncommon that the 
putative CSC only express a few of them. Meanwhile, it remains 
to be determined how reliably these markers reflect the stemness 
of cells.

In addition to their identification, the investigation of the bio-
logical process closely associated with CSC is equally important. 
Among various biological processes, epithelial–mesenchymal 
transition (EMT), autophagy, and cellular stress response have 
been associated with CSC, although their effects on CSC are not 
in consensus. In the following sections, we review both sides of 
the evidence that couples/uncouples these processes with CSC 
and discuss the current view that regards CSC as a cellular state 
of a heterogeneous population of cancer cells.

2. EMERGING EVIDENCE UNLINKS CSC AND EMT
The EMT is a gene-reprogramming process that has been closely 
associated with several features of CSC. Regardless of whether 
it is driven by the environmental stimuli or other mechanisms, 
EMT enhances the migratory and invasive potentials of cancer 
cells.17–19 The induction of EMT has been linked to self-renewal 
and tumor-initiating capacities, which is supported by the find-
ings that EMT transcription factors, Snail and ZEB1, repress the 
epithelial features and subsequently initiate the dedifferentiation 
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in colon, gastric, breast, and liver cancers.20–30 Phenotypically, it 
has been demonstrated that cancer cells underwent EMT form 
at least 10-fold more tumor spheres.31 Moreover, several studies 
using the in vivo mouse breast cancer model showed that the 
upregulation of Snail by the induction of EMT augments the 
efficiency in tumor formation20,32 and that the CD24– subpop-
ulation that is transitioned from CD24+ breast cancer cells by 
TGF-β-induced EMT displays superior tumor-initiating capac-
ity.33,34 Accordingly, it is generally agreed that EMT promotes 
the acquisition of mesenchymal-like phenotype, simultaneously 
endowing CSC with the abilities to invade, metastasize, colo-
nize, and self-renew.

Although previous studies favor the notion that EMT is a 
general feature of CSC,20,34–37 growing evidence suggests that 
cancer cells undergoing EMT may not necessarily gain stemness 
properties, thus uncoupling the CSC and EMT. Indeed, Ye et 
al employed the MMTV-PyMT promoter-driven mouse breast 
cancer model and showed that the Slug and Sox9, two well-
known EMT transcription factors, may play different roles in 
mammary stem cells and breast CSC-like cells.20 Celià-Terrassa 
et al found that the subpopulation with mesenchymal traits is 
deprived in TICs and that an overexpression of Snail1 in TIC-
enriched subpopulation suppresses their self-renewal and meta-
static phenotype.38,39 Conversely, knockdown of Snail1 not only 
enhances the epithelial features but also augments the tumor-
initiating capacity of TIC. Beck et al showed that, in skin papil-
loma, the level of Twist1 required for the tumor maintenance 
by promoting proliferation has minimal effect on the repression 
of E-cadherin and induction of EMT, implying that the mes-
enchymal phenotype and tumor-initiating capability are not 
constantly linked.40 Redmer et al and Polo et al even showed 
that the epithelial molecule E-cadherin is crucial for embryonic 
stem (ES) cell pluripotency and that the mesenchymal–epithelial 
transition initiates the cellular reprogramming of fibroblast to 
induced pluripotent stem cells.41–44 These studies thus suggest 
that the EMT may be dispensable during the process of CSC 
development. Not only is the contribution of EMT to CSC for-
mation heavily debated but also the role of EMT in metastatic 
phenotype of CSC is argued. As exemplified by the study from 
Ocaña et al, while Prrx1 is capable of inducing EMT in embryos 
and cancer cells, downregulation of this transcription factor 
actually facilitates breast stem-like cancer cells to metastasize.45 
Accordingly, it should be appropriate to consider EMT and CSC 
formation being two separate pathways that, nonetheless, can 
cross each other.

3. CONTROVERSY REMAINS BETWEEN CSC AND 
CELLULAR STRESS RESPONSE

Over the past decades, the majority of studies generally reach 
a consensus on the hypothesis of “dynamic stemness,” presum-
ing that the stemness of CSC is inducible from the subpopu-
lation of committed cancer cells. Due to the facts that tumors 
are constantly challenged by various stress and that their con-
tinuous growth requires CSC, the cellular responses to stress are 
assumed to have a role in the reprogramming of cancer cells into 
CSC. Indeed, hypoxia that often occurs as tumors outgrow the 
normal blood supply has been demonstrated as a strong stimu-
lus to enhance the aggressive behavior of multiple malignancies. 
Accumulated studies also showed that embryonic and several 
pluri- or multipotent stem cells reside in a relatively hypoxic envi-
ronment and that the stem-like phenotype in prostate, lung, and 
other types of cancers is enhanced by hypoxia.46,47 Another cel-
lular stress that reportedly predisposes cancer cells to enhanced 
stem-like phenotype is the oxidative stress. Gopal et al and Saijo 
et al employed low dose of H2O2 in culture medium and showed 

that the induction of oxidative stress upregulates the Sox2 
activity and certain stem-like phenotypes in breast (MCF7 and 
ZR751) and lung (ZR751) cancer cell lines.48,49 In addition to 
the hypoxic and oxidative stress, high level of replication stress 
is also commonly found in the CSC subpopulation. The increase 
in replication stress is often associated with aberrant DNA rep-
lication and cell cycle progression subsequent to the oncogene 
overactivation. As shown in the studies of glioma and colorectal 
cancers, the tumor cells are heterogeneous in the amount of con-
stitutive replication stress, and the level of which is higher in the 
subset of CSC than non-CSC. Consistently, a number of studies 
demonstrated that CSC are inherently equipped with robust rep-
lication stress and DNA damage response, allowing these cells 
to tolerate high level of replication stress. Taken together, these 
studies suggest that cellular stress and the response may directly 
contribute to, or at least be implicated in, the process of CSC 
development.

Although an association between stress response with CSC 
has been demonstrated, it is still puzzling that cellular stress, 
which is potentially cytotoxic, exerts a promotive effect on CSC 
development. Specifically, it is unclear why and how CSC har-
bor high level of replication stress, which essentially opposes 
DNA replication and cell proliferation. Notably, McGrail et al 
recently used systemic-level approaches and found that CSC 
are featured with gene signature defective in replication stress 
response and that such defects in replication stress response 
rewrite nonmalignant cells into a CSC-like state.50 Parkes et al 
also showed that deficiency in genes associated with DNA repair 
in S phase promote cancer cells transitioning toward CSC.50,51 
These data, along with several lines of evidence, thus provide a 
solid link between replication stress response defects and cancer 
stemness. Likewise, Polewski et al showed that the deregulation 
of SLC7A11, a catalytic subunit of electroneutral transporter 
that functions as an ROS scavenger, increases the level of endog-
enous ROS and enhances the CSC phenotype.52 Accordingly, 
CSC may carry certain defective cellular stress response, and 
their stemness phenotypes are possibly the consequence of such 
inherent deficiency.

4. CONTEXTUAL DEPENDENCY COMPLICATES THE 
RELATIONSHIP BETWEEN CSC AND AUTOPHAGY

Autophagy is a lysosomal degradation pathway originally rec-
ognized as a response to nutrient deprivation and starvation. 
Autophagy is increased in senescent cells, which, however, can 
be interpreted as either a cause or a consequence of senescence.

Since autophagy has been considered as a sign of senes-
cent cells, the observation that autophagy is upregulated and 
required for the maintenance of CSC is intriguing. Indeed, as 
shown in the studies of CSC enriched from breast, pancreatic, 
liver, osteosarcoma, ovarian, and glioblastoma cancers, target-
ing the components of autophagy negatively impacts the self-
renewal capacity and the expression of stemness markers.53 
Molecularly, the autophagy is linked to EGFR/Stat3, TGF-β/
Smad, and STAT3/JAK2/IL-6 pathways, and the signaling of 
which is interrupted by disruption of autophagy, ultimately 
leading to a decrease in tumorigenicity of breast cancer-stem 
like cells.54–56 Peng et al showed that Forkhead Box A2 (FOXA2) 
is overexpressed in ovarian cancer stem-like cells, thus serv-
ing as a CSC marker of this cancer type and that knockdown 
of autophagy not only decreases the level of FOXA2 but also 
reduces their self-renewal ability.57 More recently, FOXO3, a 
mediator of the transcription of several autophagy-related genes, 
is shown to be required for sustaining the leukemia-initiating 
cells,58 although an opposite role of FOXO3 in CSC is also dem-
onstrated in multiple malignancies.59–62 Sharif et al also found 
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that the perturbation in basal autophagy decreases the stemness 
and promotes the differentiation of teratocarcinoma cells, which 
are highly malignant totipotent stem-like cancer cells.63 These 
studies suggest that the effect of autophagy on CSC is context 
dependent, with distinct and perhaps opposite roles in different 
stages of CSC development.

5. CURRENT VIEW OF CSC

5.1. CSC/non-CSC transition states: it is more than binary
Accumulated from years of studies, including those mentioned 
previously, the current view of CSC is updated. The concept of 
CSC states has evolved from a binary to a continuum, which 
includes intermediate CSC that exhibit partial stemness and 
differentiated phenotypes. This CSC/non-CSC continuum in 
cell phenotypes reflects the extra- and intracellular cues that 
simultaneously activate several dedifferentiation and differenti-
ation-associated processes, and thus, cells can be in the middle 
of phenotypic transitioning due to their differential response to 
diverse stimuli. Indeed, as shown in the study exploiting andro-
gen analog to enrich prostate cancer stem/progenitor popula-
tion, cells that co-express stem cell-like markers CD44 and/or 
α2β1-integrin, as well as basal–luminal markers p63, CK5/14, 
and CK8/18, are detected. These cells exhibit an intermediate 
phenotype between basal and secretory cells of prostate epithe-
lium and are able to self-renew or acquire a more differenti-
ated phenotype after injuries.64–68 Another study analyzing the 
generation of leukemia stem cells by introducing MLL-Af9 
fusion protein into myeloid cells also identified abnormal hybrid 
cells that have features of both stem cells and more differen-
tiated cells.69,70 Experimentally, it is not surprising to find that 
the expression of several CSC markers (such as CD133, CD44, 
and Nanog) at single-cell level as revealed by flow cytometry 
often shows a single population in relatively normal distribu-
tion, instead of bimodal distribution that clearly specifies CSC 
vs non-CSC subpopulations.71–73 Therefore, rather than a distin-
guished subpopulation of cancer cells, it may be more relevant 
to consider CSC as a state or process by which cancer cells gain 
certain malignant characteristics, including enhanced tumori-
genicity, chemoresistance, and metastasis.

5.2. CSC entity: it is a pool of multifunctional and 
interdependent cells
Another update of CSC concept, being two sides of a coin with 
CSC/non-CSC continuum, is that CSC refers to an entity that 
encompass a group of multifunctional and interdependent cells. 
Phenotypic heterogeneity within pluripotent ES cells, multipotent 
adult stem cells, and CSC of various origins has been character-
ized in numerous studies.74–79 Such coexistence of multiple cellular 
states within stem cells and CSC population was previously pre-
sumed to be the consequence of differentiation of CSC. Notably, 
studies of mice ES cells showed that Nanog is heterogeneously 
expressed, and similar Nanog distribution would be unavoidably 
reestablished even after repetitive cell sorting and purification.80,81 
Likewise, combining the use of media that has been proven effec-
tive to enrich CSC subpopulation with flow cytometry–based 
cell sorting nonetheless fails to maintain CSC at a high ratio.75,82 
These evidences suggest that CSC is a pool of cells that are in a 
dynamical equilibrium of different cellular states through revers-
ible interconversion. Perhaps, CSC in intermediate state is impor-
tant to maintain the stemness of CSC pool as a whole by releasing 
signaling factors or forming part of the tumor microenvironment 
known as niche. In support of the notion that CSC is an entity 
that comprises cells in different states or with varying properties, 
Dieter et al employed molecular tracking strategy and were able 
to categorize TICs of human colon cancers into three different 

functional types, including extensively self-renewing long-term 
TIC (LT-TIC), tumor transient amplifying cells (T-TACs), and 
delayed contributing TIC (DC-TIC).83 Importantly, different 
types of cells separately predominate tumor formation or metas-
tases but collaboratively sustain the whole population of TIC. 
Therefore, CSC should be a pool of cells featured with function-
ally diverse properties that are crucial for their existence.

In conclusion, expanding the understanding of CSC population 
reconciles the clonal evolution “stochastic” and the CSC “hierar-
chical” models, allowing us to appreciate that these two models 
may not be mutually exclusive but actually are interrelated. Indeed, 
the demonstrations of heterogenicity and plasticity of CSC popu-
lation derived from their ability to reprogram and revert between 
CSC and non-CSC refine our view of CSC. This insight ration-
alizes the observation that certain biological processes, including 
EMT and autophagy, may have dual effects on CSC. Moreover, 
the evidence that certain stemness-associated transcription factors, 
such as Nanog, Oct4, or c-Myc, fluctuate between low and high 
expression levels within CSC population suggests that CSC cannot 
be defined by a rigid phenotype.79,84–88 These updates bring into a 
new perspective that the state of CSC/non-CSC is a continuum 
in transition and the entity of CSC may contain diverse cell types 
of subclones. Bearing these concepts in mind, CSC population in 
a given study may not necessarily be the culprit for all of cancer 
initiation, metastatic dissemination, chemoresistance, and disease 
recurrence or relapse. Future studies focus on reverting cancer cells 
in CSC state should hold great therapeutic implications.
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