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ABSTRACT

Over the past 20 years, granulocyte colony-stimulating factor (G-CSF) has driven the attention
of researchers as a therapeutic agent for curing patients suffering from neutropenia. Despite
the successful use of G-CSF, it currently requires daily injections, which are inconvenient,
expensive, and distressing for children. Therefore, an alternative strategy for using G-CSF for
treatment is needed. Understanding the G-CSF structure, expression, mechanism of action,
and how it induces neutrophils mobilization is crucial to producing promising cancer
therapy. The ability of G-CSF to mobilize hematopoietic stem cells from the bone marrow
into the blood circulation was consequently exploited and altered the practice of
hematopoietic stem cell transplantation. This is the motivation for the current review, which
sheds light on the history of G-CSF and then focuses on the mechanism of action upon
binding to its receptor (G-CSFR) and how that had led to the stimulation of neutrophils
mobilization. The findings of this review show new insight into the mechanism of G-CSF
that induces neutrophils mobilization. Thus, Understanding the G-CSF will provide a more
effective treatment for all neutropenia patients.

(known as interleukin 3, IL-3) stimulated multiple
hematopoietic cell colonies [3].

In the middle of 1983, G-CSF was first purified and
characterized in mice using a mouse lung-conditioned
medium by Nicola and his collaborators in Melbourne,
Australia [4]. After two years, Human GCSF (hG-CSF)
was first purified from the human bladder carcinoma
cell line 5637 [5]. In 1986, molecular cloning of the
complementary deoxyribonucleic acid (cDNA) for G-
CSF and the first expression of Escherichia coli
(E. coli) were attained by Souza and Boone [6]. As a
result, the previous accomplishments facilitated the
development of recombinant G-CSF, which enabled
the study of its biological characteristics [7].

1. History of granulocyte colony-stimulating
factor (G-CSF)

In the early 1960s, several studies on animal models
were conducted to explore how white blood cells
(WBCs) are regulated within the blood circulation. In
1966, the identification of WBCs specific regulator
remained unknown until two research groups devel-
oped an in-vitro assay that measured the growing colo-
nies of granulocytes and monocytes from bone
marrow (BM) and spleen cells samples [1,2]. Neverthe-
less, the growth of colonies was based on the presence
of unknown proteins that were given the name of
colony-stimulating factors (CSFs). In the middle of the
1980s, different laboratories performed work to
purify and classify CSF proteins. Resulting from these

efforts, four CSF proteins with different activities
were discovered. They were classified and named
based on the type of cell colonies they stimulated: gra-
nulocyte-macrophage colony stimulating factor (GM-
CSF) stimulated both granulocyte and macrophage
colonies, macrophage colony stimulating factor (M-
CSF) stimulated macrophage colonies, G-CSF stimu-
lated granulocyte colony formation, and multi-CSF

2. G-CSF
2.1. Structure of G-CSF

Human G-CSF (hG-CSF) is located on chromosome 17 and
encoded by CSF3 gene. However, this gene encodes two
different messenger ribonucleic acid (mRNA) products
due to G-CSF differential splicing: G-CSFa contains 177
amino acids (18.8kD) and G-CSFb contains 174 amino
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acids (19.6kD). The difference between the two types is
that G-CSFa contains additional three residues after
Leucine35 (Valine-Serine-Glycine). The G-CSFb (174
amino acids) contains a glycosylation site on the oxygen
known as O- linked glycosylation. It is attached to one
threonine at the site of residue 133, and this form is
expressed in mammalian cells. It has been reported that
G-CSFb obtains more biological activity (~20 times
more than G-CSFa), which makes it the source of commer-
cial pharmaceutical products for G-CSF [8].

The feature of hG-CSF central structure is similar to
other helical cytokine family members. It contains four
antiparallel, left-handed a-helical fold bundles con-
nected by two long loops in a form that two helices
extend up (A contains 29 amino acids & B contains
21 amino acids) and two helices extend down (C con-
tains 24 amino acids & D contains 30 amino acids) [9]
(Figure 1). Additionally, hG-CSF has five cysteine resi-
dues. Four of these cysteines form two internal
disulfide bonds located between Cys36- Cys42 and
Cys64— Cys74, leaving one free cysteine residue at
Cys17™" position with a free sulfhydryl group [10].

The central structure of hG-CSF consists of four anti-
parallel, left-handed a-helical fold bundles connected
by two long loops in a form called up-up-down-
down structure that two helices A (Red color) and B
(Orange color) extend up and two helices C (White
color) and D (Cyne color) extending down. N=
amine-terminus and C = carboxyl-terminus (Molecular
graphics system called PyMOL) (Figure 1).

2.2. The importance of G-CSF expression and
action

hG-CSF is a cytokine that regulates the proliferation, differ-
entiation, and survival of neutrophils [11], as proved by
the significant reduction of neutrophils in both G-CSF
and G-CSFR deficient mice [12,13]. G-CSF can be produced
by a variety of cells, including endothelial cells, fibroblasts,
macrophages, monocytes, and bone marrow stromal cells
in response to several inflammatory mediators such as
vascular endothelial growth factor (VEGF), interleukin 3
(IL-1B), interleukin (IL-17), lipopolysaccharide (LPS), necro-
sis factor alpha (TNF-qa) [14]. It has been reported that hG-
CSF is highly expressed on a number of cancer cell types,
including human gastric and colon cancers [15,16], as well
as acute myeloid leukemia (AML) [17,18] and other
different carcinoma cells [19]. Besides, it has a major role
in treating neutropenia in cancer patients undergoing
chemotherapy [20].

G-CSF is present at low levels in healthy individuals
and at increased levels in infections and inflammations,
etc [21-23]. Normally, levels of circulating G-CSF are
very low (<100 pg/mL). Nevertheless, G-CSF levels can
increase to 20 times baseline levels in conditions of
stress, resulting in a rapid increase of circulating neutro-
phils [24].
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Many mechanisms or evidences revealed that G-CSF
could stimulate and regulate the production of neutro-
phils progenitors from the bone marrow to the blood
circulation. G-CSF enhances the proliferation of all gran-
ulocytic lineages from myeloblast (hematopoietic stem
cell) to myelocyte. GCSF drives differentiation of neutro-
phils and rapidly accelerates the metamyelocytes matu-
ration, resulting in rapid and continuous elevation of
neutrophils number in the blood circulation [25-28]

Significantly, it has been shown that G-CSF treatments
stimulate a faster erythropoiesis-enhancing response
than that of erythropoietin (EPO). These data recommend
an alternative method to treat acute anemia, especially
when patients undergo a clinical emergency in remote
areas without appropriate supplies from blood banks [29].

Recently, it has been reported that G-CSF has a dual
activity that is beneficial both in decreasing acute neur-
onal degeneration and enhancing long-term plasticity
following cerebral ischemia in the CNS. Treatment of G-
CSF exerts neuroprotective effects on damaged
neurons throughout the suppression of the mitochon-
drial stress and endoplasmic reticulum (ER) stress and
maintains cellular homeostasis by reducing pro-apopto-
tic proteins and increasing anti-apoptotic proteins [30].

3. G-CSF receptor

3.1 Discovery, expression, and cloning of G-CSF
receptor

Effects of G-CSF are mediated by binding to a single
homodimer receptor, granulocyte colony stimulating
factor receptor (G-CSFR). Therefore, the regulation, pro-
liferation, and differentiation of neutrophils precursors
are highly dependent upon binding to their receptors
[15]. GCSF-R is a membrane protein expressed in all
granulocytic lineage cells, including neutrophils, pro-
genitors, and myeloid leukemia cells [31]. G-CSFRs
have also been detected on normal B & T lymphocytes,
monocytes [32,33], and non-hematopoietic tissues, such
as cardiomyocytes [34], vascular endothelial cells [35],
neural stem cells [36], placenta [37], and many non-
hematopoietic tumors cell lines [38].G-CSFRs are
mainly expressed on common myeloid precursors
(CMP), and mature neutrophils, however, the expression
of these receptors increases more during maturation
[39]. Recently, G-CSFRs have been shown to be highly
expressed on human gastric and colon cancer cells [16].

In 1990, G-CSFR was first cloned from mice myeloid
leukemia cell line (NFS-60) and shown to form homo-
dimers upon binding to its ligand G-CSF, resulting in
a complex 2:2 ligands: receptor subunit [40].

3.2. G-CSFR structure and function

The G-CSFR is a cell surface receptor and belongs to
the class | hematopoietic cytokine receptor super-
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Figure 1. Human G-CSF structure.

family (HCR) [41]. G-CSFR is around 120 kDa and con-
tains 813 amino acids in length, arranged as follows:
an extracellular region (604 amino acids), a transmem-
brane region (26 amino acids), and 183 amino acids for
an intracellular cytoplasmic domain. The extracellular
domain consists of N-terminal immunoglobulin (Ig)-
like domain, cytokine receptor homology (CRH)
domain, and a Trp-Ser-X-Trp-Ser (WSXWS) motif
required for G-CSF ligand binding (a hallmark of the
class | cytokine receptors), and the remainder of this
region is formed by 3 fibronectin type Il (FNIII)
domains [42-44].

The intracellular region contains three conserved
sub-domains called Box 1, Box 2 and Box 3 [45]. Box
1, Box 2, and tyrosine residues at site Y704 have a fun-
damental role in proliferating the signaling, while the
Box 3 motif is associated with receptor trafficking
[46,47]. The intracellular region also has three tyrosine
residues, 729, 744, and 764, which play an important
role in proliferation, differentiation, and cell survival
(Figure 2) [43,46].

Ligation of G-CSF to its receptor forms homo-dimers
with stoichiometry 2:2 [48,49]. Each ligand of G-CSF
interacts with the CRH domain of one G-CSFR subunit
and the immunoglobulin (Ig)-like domain of the
second G-CSFR subunit, forming a crossover configur-
ation of the receptor subunits (Figure 3(B)) [50].

3.2.1. JAK/STAT pathway

The binding of G-CSF causes conformational changes
to its receptor that activates the Janus kinase (JAKs)/
signal transducer family JAK1, JAK2, and Non-receptor

tyrosine-protein kinase (TYK2) [46]. The activation of
JAKs proteins subsequently phosphorylates G-CSFR
by binding to its Box 1 and 2 domains, creating poten-
tial docking sites for a variety of signaling molecules
such as signal transducer and activator of transcrip-
tion (STAT) proteins in cytoplasm [51], particularly
STAT3 with slight stimulation of STAT1 and STAT5
[43,52]. G-CSFR dimerizes and brings the JAKs
together into proximity resulting in their trans-phos-
phorylation of one another. This, in turn, phosphory-
lates tyrosine (Y) residues (Y704, Y729, Y744, and
Y764) located in the cytoplasmic region and serves
as docking sites for STAT's. Notably, STAT3s have
been reported to interact with tyrosine residues 704
and 744 of the G-CSFR through their Src Homology
2 (SH2) domains, get phosphorylated and activated
by JAK2, and then form homodimers that migrate to
the nucleus, where they bind DNA and activate
gene transcription [53-58]. It seems that they might
regulate the mobilization of neutrophils from the
bone marrow to the blood circulation [59,60]. In
normal conditions, STAT3 induces a suppressor of
cytokine signaling 3 (SOCS3) to bind and activate G-
CSFR, leading to receptor degradation and cessation
of the signalling [58,61]. SOCS proteins, mainly
SOCS3, showed an inhibitory effect on G-CSF signal-
ing during neutrophilic differentiation [59-61].
STATS5 is another important signalling activated and
mediated by G-CSFR that induces proliferation and sur-
vival of neutrophils [62], directly controlled and acti-
vated by JAKs throughout phosphorylation [61].
However, activation kinetics for STAT5 is significantly
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different from STAT3. The activation of STATS5 is transi-
ent and returns to the basal level in around half-hour,
while the activation of STAT3 continues for many hours
[42,61]. Therefore, binding of G-CSF to its receptor-
mediated differential activation of both STAT5 and
STAT3 may play an important role in controlling
myeloid lineage proliferation against differentiation,
especially neutrophils [58]. Since activation of STAT3
is sustained for many hours, it could be the main reg-
ulator for the neutrophil’'s mobilization.

3.2.2. MAPK/ERK pathway

Although ligation of G-CSF to G-CSFR is widely
believed to induce JAK/STAT pathways, it has also
been linked to mitogen-activated protein kinases/
extracellular signal-regulated protein kinase MAPK/
ERK pathway (also recognized as the Ras-Raf-MEK-
ERK pathway). Trosine residue Y764 serves as a
docking site for the growth factor receptor-bound
protein 2(Grb2), which induces p21 Ras pathway. In
vitro, a significant decrease in the activation of p21
Ras and proliferation of neutrophils were noticed
when Y764 was absent [63,64]. (Erk 1/2) MAP kinase
is considered to be the main downstream effector

from the p21 Ras pathway that is involved in signaling
proliferation of myeloid precursor cells. It is also
reported that Erk1/2 is strongly activated in neural
cells upon exposure to G-CSF [7,42,65]. The binding
of G-CSF to its receptor activates the intracellular
kinase (MEK). Phosphorylated MEK stimulates Erk %2
to be activated. Phosphorylated Erk %2 induces neutro-
phils migration and IL-8 production [55].

3.2.3. AKT/PI3-K

AKT/ PI3-K signalling is another pathway that is activated
by JAK2. It is important for differentiation, proliferation,
and survival of immature neutrophil precursors by acti-
vating the nuclear factor kappa B/ mammalian target
of rapamycin (NF-kB, mTOR), which acts as an inhibitor
for apoptosis but is not able to extend the lifespan of
neutrophils in the presence of G-CSF (Figure 2) [66].

Mobilization of neutrophils

Production, proliferation, and differentiation of neutro-
phils initiate from the HSCs in the bone marrow. It has
been shown that following differentiation; the majority
of mature neutrophils remain in the bone marrow for
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Figure 3. [A] In the absence of the ligand, G-CSFR is associated with Janus kinases (Jaks). [B] The binding of the ligand to the
receptor occurs at a 2:2 ligand:receptor subunit stoichiometry, forming a crossover configuration between the receptor subunits
that brings the Jaks into proximity and enables their trans-phosphorylation and stimulation. [C] The intracellular 4-tyrosine resi-
dues of the G-CSFR (represented by stars) are phosphorylated by Jaks. [D] STAT interacts with the phosphotyrosine residues
through their Src Homology 2 (SH2) domains and become phosphorylated by the Jak. Phospho-dimers of STATs accumulate in
the nucleus and activate transcription factors that drive the neutrophils from the bone marrow to the blood circulation.

approximately 5-6 days. During infection or inflam-
mation, these cells are available for rapid response
and release to the blood circulation and then
migrate to affected tissues [67].

G-CSF is a hematopoietic cytokine that regulates
granulopoiesis and promotes proliferation, differen-
tiation, and neutrophil activation [14]. It has been
shown that G-CSF enhances neutrophils’ migration into
the peripheral tissues. In addition to G-CSF, different
agents are involved in the regulation of neutrophils
migration. For example, C5a, leukotriene B4 (LTB4), and
CXCR2 ligands (e.g. IL-8) are found in humans, whereas
keratinocyte chemoattractant [KC] and macrophage
inflammatory protein 2 [MIP-2] in mice; [68-70]. It has
been shown that CXCR2 is more potent than G-CSF in
enhancing neutrophils migration [71].

Previously, it was reported that STAT3 is the major
transcription factor activated upon binding of G-CSF
to its receptor, but the role of STAT3 in the mechanism
of neutrophils mobilization was not clear [72]. At the
early stage of acute inflammation, the chemokines,
macrophage inflammatory protein-2 (MIP-2, known
as Cxcl2) and keratinocyte-derived chemokine (KC,
Cxcl1), and their shared receptor CXCR2 induce the

mobilization of neutrophils from the BM to the circulat-
ing blood. A previous study examined the role of
STAT3 for neutrophil migration by treating STAT3-
deficient mice with MIP-2 by intraperitoneal injection.
Treated STAT3-deficient mice did not show an increase
in circulating neutrophil amounts compared to wild-
type mice, which suggested the importance of STAT3
in neutrophils migration [59,60,73].

Bajrami et al. [67,74] showed that G-CSF does not
synergize with CXCR2 to induce neutrophil mobiliz-
ation during the early phase of acute inflammation.
Instead, it inhibits CXCR2-mediated rapid neutrophil
mobilization. This result verifies that the initial
CXCR2-mediated neutrophil mobilization can occur
at maximal levels without G-CSF-induced inhibition.
At a later-phase of acute inflammation, G-CSF could
induce STAT3 to suppress CXCR2-mediated rapid neu-
trophil mobilization and reserved neutrophils in the
BM, in part throughout their chemokine receptor 4
(CXCR4) expression, which binds to the stromal cell-
derived-1 (SDF-1), expressed in the BM [59,60,73]
(Figure 4).

In summary, because G-CSF itself is not chemotac-
tic, this concept is supported by the observation that
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Figure 4. Scheme of the proposed model. How G-CSF and STAT3 induce the mobilization of neutrophils. At the early stage of
acute inflammation, MIP-2, KC, and their shared receptor CXCR2 induce the mobilization of neutrophils from the BM to the
blood circulation. At the late stage of acute inflammation, GCSF, together with STAT3, inhibits CXCR2-mediated rapid neutrophil
mobilization and reserved neutrophils in the BM, in part throughout their CXCR4 expression, which binds to SDF-1 (stromal cells

express SDF-1) expressed in the BM. (] reserve ¢ 1 induce).

G-CSF fails to induce circulating neutrophil amounts in
CXCR2-knockout mice [74]. Inhibiting the SDF-1/
CXCR4 interaction is sufficient to enable neutrophil
release from the marginated pool present in the lung
and block the neutrophil trafficking back to the BM,
as shown by the use of the CXCR4 antagonist
AMD3100 (Plerixafor) [75].

Conclusions

G-CSF is a hormone produced by different tissues to
stimulate neutrophils’ production from the bone
marrow into the blood circulation. The rhG-CSF has
been shown to stimulate neutrophils to treat neutro-
penic patients and in stem cell mobilization in the
cases of BM transplantation. Nowadays, G-CSF is a
recognized therapy routinely used to treat patients
with neutropenia and thus decreasing morbidity,
especially cancer patients undergoing chemothera-
peutic drug treatments. Understanding the G-CSF
structure, expression, and mechanism of action upon
binding to its receptor and leading to the mobilization

of neutrophils is fundamental to generating a promis-
ing cancer therapy.
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